

Sequences and Series - Binomial Theorem

1 Find p in the expansion of $(3x + \frac{p}{x})^8$, where p>0. Given that the coefficient of x^4 in the expansion is equal to the coefficient of x^6 .

- 2 Given: $\left(x^3 + \frac{4}{x}\right)^7$
 - Write down the number of terms in this expansion.
- **b** Find the coefficient of x^9 .

3 Write the next 5 terms of the sequence defined recursively.

$$\boxed{a}$$
 $a_1 = 1$, $a_2 = 4$, $a_{n+2} = a_{n+1} + 3a_n$

b
$$a_1 = 50, a_{n+1} = \frac{a_n}{2} - 1$$

- 4 Write the mentioned term of the given sequence.
 - a 5th term in $(y + 3x^4)^4$

b 2nd term in $(3x^2 - 1)^4$

 \bigcirc 3rd term in $(3y - 1)^4$

d 4th term in $(x^2 + 4)^4$

Sequences and Series - Binomial Theorem

Answers

1 Find p in the expansion of $(3x + \frac{p}{x})^8$, where p>0. Given that the coefficient of x^4 in the expansion is equal to the coefficient of x^6 .

- 2 Given: $\left(x^3 + \frac{4}{x}\right)^7$
 - Write down the number of terms in this expansion.
- **b** Find the coefficient of x^9 .

2240

Write the next 5 terms of the sequence defined recursively.

$$\boxed{a}$$
 $a_1 = 1$, $a_2 = 4$, $a_{n+2} = a_{n+1} + 3a_n$

b
$$a_1 = 50, a_{n+1} = \frac{a_n}{2} - 1$$

7, 19, 40, 97, 217

24, 11, 4.5, 1.25, -0.375

- Write the mentioned term of the given sequence.
 - a 5th term in $(y + 3x^4)^4$

b 2nd term in $(3x^2 - 1)^4$

 \bigcirc 3rd term in $(3y - 1)^4$

d 4th term in $(x^2 + 4)^4$