Writing Equations of Parallel and Perpendicular Lines

Write the slope-intercept form of the equation of the lines described below.

1	Through (5,9) Parallel to $9x - y = -12$	2	Through (-1,6) Perpendicular to <i>x</i> - 5y = 18
3	Through (-5,2) Perpendicular to -2 <i>x</i> + 3 <i>y</i> = -20	4	Through (-1,2) Parallel to 4y = -5x + 16
5	Through (-3,-2) Parallel to $x + 3y = 4$	6	Through (-1,1) Perpendicular to y = x + 2
7	Through (-1,2) Parallel to $y = \frac{-2x}{5} + 3$	8	Through (4,4) Perpendicular to $y = \frac{7x}{3} + 4$

Writing Equations of Parallel and Perpendicular Lines

Answers			
1 Through (5,9) Parallel to $9x - y = -12$	 Through (-1,6) Perpendicular to x - 5y = 18 		
y = 9x - 36	y = 1 - 5x		
3 Through (-5,2) Perpendicular to $-2x + 3$	4 Through (-1,2) y = -20 Parallel to $4y = -5x + 16$		
$y = \frac{-3x}{2} - \frac{11}{2}$	$y = \frac{3}{4} - \frac{5x}{4}$		
5 Through (-3,-2) Parallel to $x + 3y = 4$	6 Through (-1,1) Perpendicular to $y = x + 2$		
$y = \frac{-x}{3} - 3$	y = -x		
7 Through (-1,2) Parallel to $y = \frac{-2x}{5} + 3$	8 Through (4,4) Perpendicular to $y = \frac{7x}{3} + 4$		
$y = \frac{8}{5} - \frac{2x}{5}$	$y = \frac{40}{7} - \frac{3x}{7}$		