Table of Contents
Last modified on February 22nd, 2024
The polar form of a complex number z = a + ib represents the complex number in terms of r and θ, where r = length of the point from the origin, and θ = angle made with the x-axis in an argand plane.
Plotting the number z in a cartesian plane, we get
Here, (a, b) are the rectangular coordinates, and the x, y axes represent the real and imaginary parts, respectively.
Now, using the Pythagorean theorem and the basic trigonometric ratio, we get r2 = a2 + b2 and Cosθ = ${\dfrac{a}{r}}$ and Sinθ = ${\dfrac{b}{r}}$.
⇒ a = rcosθ, b = rsinθ
Substituting the values of a and b in z = a + ib, we get
z = rcosθ + irsinθ
Thus, the equation of any complex number z = a + ib in the polar form is
z = r(cosθ + isinθ), here
Or, θ = ${\tan ^{-1}\left( \dfrac{b}{a}\right)}$ + 180° for a < 0
Now, let us convert a complex number z = -3 + 3i in the polar form. Since the real part is -3, z lies in the second quadrant, as shown:
Here, we calculate the modulus r and the argument θ of z
r = |z| = ${\sqrt{\left( -3\right) ^{2}+\left( 3\right) ^{2}}}$ = ${\sqrt{18}}$ ≈ 4.24
θ = ${\tan ^{-1}\left( \dfrac{3}{-3}\right)}$ = -${\tan ^{-1}\left( \dfrac{3}{3}\right)}$.
Since z lies in the second quadrant, arg(z) = θ = -${\tan ^{-1}\left( \dfrac{3}{3}\right)}$ + 180°
= -45° + 180° = 135°
Thus, the polar form of the complex number z = -3 + 3i is 4.24(cos135° + isin135°).
Let 5 + 3i and 2(cos60° + isin60°) be two complex numbers, one in the standard (rectangular) form and another in the polar form.
On adding, first, we convert 2(cos60° + isin60°) in the polar form into the standard form.
z = 2(cos60° + isin60°) = a + ib, here a = 2cos60° = 0.5 and b = 2sin60° = ${\sqrt{3}}$
⇒ 2(cos60° + isin60°) = 0.5 + ${i\sqrt{3}}$
Adding both the given complex numbers, we get (5 + 3i) + (0.5 + ${i\sqrt{3}}$) = (5 + 0.5) + (3 + ${\sqrt{3}}$)i.
By substituting the value of ${\sqrt{3}}$ ≈ 1.732, the sum is 5.5 + 4.732i
Now, we convert the sum in the polar form by finding the modulus and argument of the number.
r = |z| = ${\sqrt{\left( 5.5\right) ^{2}+\left( 4.732\right) ^{2}}}$ ≈ ${\sqrt{52.64}}$, and
θ = ${\tan ^{-1}\left( \dfrac{4.732}{5.5}\right)}$ ≈ 0.71
Thus, the required sum of 5 + 3i and 2(cos60° + sin60°) is ${\sqrt{52.64}}$(cos0.71° + sin0.71°)
On multiplying z = 4(cos90° + isin90°) by w = 2(cos240° + isin240°), the product obtained is:
zw = 4(cos90° + isin90°) ✕ 2(cos240° + isin240°)
= 4 ✕ 2 [(cos90°cos240° – sin90°sin240°) + i(sin90°cos240° + cos90°sin240°)]
= 8[cos(90° + 240°) + isin(90° + 240°)]
= 8(cos330° + isin330°)
Thus, for z1 = r1(cosθ1 + isinθ1) and z2 = r2(cosθ2 + isinθ2), the product will be
z1z2 = r1r2[cos(θ1 + θ2) + isin(θ1 + θ2)]
On dividing z = 6(cos150° + isin150°) by w = 12(cos90° + isin90°), the quotient is:
${\dfrac{z}{w}}$
= ${\dfrac{6\left( \cos 150^{\circ }+i\sin 150^{\circ }\right) }{12\left( \cos 90^{\circ }+i\sin 90^{\circ }\right) }\times \dfrac{\left( \cos 90^{\circ }-iSin90^{\circ }\right) }{\left( \cos 90^{\circ }-i\sin 90^{\circ }\right) }}$
= ${\dfrac{1}{2}\dfrac{\left( \cos 150^{\circ }cos90^{\circ }+\sin 150^{\circ }sin90^{\circ }\right) +i\left( \sin 150^{\circ }cos90^{\circ }-\cos150^{\circ }sin90^{\circ } \right) }{\cos ^{2}90^{\circ }-i^{2}\sin ^{2}90^{\circ }}}$
= ${\dfrac{1}{2}\dfrac{\cos \left( 150^{\circ }-90^{\circ }\right) +i\sin \left( 150^{\circ }-90^{\circ }\right) }{\cos ^{2}90^{\circ }+\sin ^{2}90^{\circ }}}$
= ${\dfrac{1}{2}\left( \cos 60^{\circ }+i\sin 60^{\circ }\right)}$
Thus, for z1 = r1(cosθ1 + isinθ1) and z2 = r2(cosθ2 + isinθ2), the quotient will be
${\dfrac{z_{1}}{z_{2}}=\dfrac{r_{1}\left( \cos \theta _{1}+i\sin \theta _{1}\right) }{r_{2}\left( \cos \theta _{2}+i\sin \theta _{2}\right) }}$
⇒ ${\dfrac{z_{1}}{z_{2}}=\dfrac{r_{1}}{r_{2}}\left[ \cos \left( \theta _{1}-\theta _{2}\right) +i\sin \left( \theta _{1}-\theta _{2}\right) \right]}$
⇒ ${\dfrac{z_{1}}{z_{2}}=r\left( \cos \theta +i\sin \theta \right)}$, here r = ${\dfrac{r_{1}}{r_{2}}}$, and θ = θ1 – θ2.
The powers of a complex number can easily be found by De Moivre’s theorem. It states that for any natural number n, zn is calculated by increasing the modulus to the nth power and multiplying the argument by n.
If z = r(cosθ + isinθ), then it is mathematically written as
zn = rn[cos(nθ) + isin(nθ)], where n is any natural number.
Let us evaluate an expression z3 = (5 + 5i)3 using De Moivre’s theorem.
First, we find the modulus value r and argument angle θ.
r = ${\sqrt{5^{2}+5^{2}}}$ = ${\sqrt{25+25}}$ = ${\sqrt{50}}$
θ = ${\tan ^{-1}\dfrac{5}{5}}$ = 45°
Using De Moivre’s theorem, we get z3 = (5 + 5i)3 = r5[cos(5θ) + isin(5θ)]
= ${\left( \sqrt{50}\right) ^{3}\left[ \cos \left( 5\times 45^{\circ }\right) +i\sin \left( 5\times 45^{\circ }\right) \right]}$
= ${250\sqrt{2}\left( \cos 225^{\circ }+i\sin 225^{\circ }\right)}$
To find the nth root of a complex number in the polar form, we use the formula:
${z^{\dfrac{1}{n}}=r^{\dfrac{1}{n}}\left[ \cos \left( \dfrac{\theta }{n}+\dfrac{2k\pi }{n}\right) +i\sin \left( \dfrac{\theta }{n}+\dfrac{2k\pi }{n}\right) \right]}$, where k = 0, 1, 2, …, n – 1.
Let us evaluate the cube root of an expression z = ${27\left( \cos \dfrac{\pi }{4}+i\sin \dfrac{\pi }{4}\right)}$
${z^{\dfrac{1}{3}}=27^{\dfrac{1}{3}}\left[ \cos \left( \dfrac{\dfrac{\pi }{4}}{3}+\dfrac{2k\pi }{3}\right) +i\sin \left( \dfrac{\dfrac{\pi }{4}}{3}+\dfrac{2k\pi }{3}\right) \right]}$
= ${3\left[ \cos \left( \dfrac{\pi }{12}+\dfrac{2k\pi }{3}\right) +i\sin \left( \dfrac{\pi }{12}+\dfrac{2k\pi }{3}\right) \right]}$
There are three roots: for k = 0, 1, 2.
When k = 0, we get
${z^{\dfrac{1}{3}}=3\left( \cos \dfrac{\pi }{12}+i\sin \dfrac{\pi }{12}\right)}$
When k = 1, we get
${z^{\dfrac{1}{3}}=3\left[ \cos \left( \dfrac{\pi }{12}+\dfrac{2\pi }{3}\right) +i\sin \left( \dfrac{\pi }{12}+\dfrac{2\pi }{3}\right) \right]}$
⇒ ${z^{\dfrac{1}{3}}=3\left( \cos \dfrac{3\pi }{4}+i\sin \dfrac{3\pi }{4}\right)}$
When k = 2, we get
${z^{\dfrac{1}{3}}=3\left[ \cos \left( \dfrac{\pi }{12}+\dfrac{4\pi }{3}\right) +i\sin \left( \dfrac{\pi }{12}+\dfrac{4\pi }{3}\right) \right]}$
⇒ ${z^{\dfrac{1}{3}}=3\left( \cos \dfrac{17\pi }{12}+i\sin \dfrac{17\pi }{12}\right)}$
Plot the complex number z = -2 + 4i in the argand plane.
Find the polar form of the complex number z = 8 + 8i.
r = ${\sqrt{\left( 8\right) ^{2}+\left( 8\right) ^{2}}}$ = ${\sqrt{64+64}}$
= ${\sqrt{128}}$ = ${8\sqrt{2}}$
θ = ${\tan ^{-1}\left( \dfrac{8}{8}\right)}$ = ${\tan ^{-1}1}$ ≈ 45°
Thus, the polar form of the given complex number z = 8 + 8i is ${8\sqrt{2}}$(cos45° + isin45°)
Last modified on February 22nd, 2024