Table of Contents
Last modified on October 15th, 2024
The derivative of hyperbolic functions represents the rate of change of the hyperbolic functions involving the combination of ex and e-x with respect to the variable.
It is used to describe the shape of electrical wires or cables hanging freely between two poles, as well as to model satellite rings and planetary formations.
As we know, the hyperbolic sine function, sinh x, is written as:
${\sinh x}$ = ${\dfrac{e^{x}-e^{-x}}{2}}$ …..(i)
Now, differentiating both sides of (i) with respect to x,
${\dfrac{d}{dx}\left( \sinh x\right) =\dfrac{d}{dx}\left( \dfrac{e^{x}-e^{-x}}{2}\right)}$
⇒ ${\dfrac{d}{dx}\left( \sinh x\right) =\dfrac{d}{dx}\left( \dfrac{e^{x}}{2}\right) -\dfrac{d}{dx}\left( \dfrac{e^{-x}}{2}\right)}$ …..(ii)
Since ${\dfrac{d}{dx}\left( e^{x}\right) =e^{x}}$ and ${\dfrac{d}{dx}\left( e^{-x}\right) =-e^{-x}}$ …..(iii)
Now, using (iii) in (ii), we get
⇒ ${\dfrac{d}{dx}\left( \sinh x\right) =\dfrac{1}{2}\left( e^{x}\right) -\dfrac{1}{2}\left( -e^{-x}\right)}$
⇒ ${\dfrac{d}{dx}\left( \sinh x\right) =\dfrac{e^{x}+e^{-x}}{2}}$
⇒ ${\dfrac{d}{dx}\left( \sinh x\right) =\cosh x}$
As we know, the hyperbolic cosine function, cosh x, is written as:
${\cosh x}$ = ${\dfrac{e^{x}+e^{-x}}{2}}$ …..(i)
Differentiating both sides of (i) with respect to x,
${\dfrac{d}{dx}\left( \cosh x\right) =\dfrac{d}{dx}\left( \dfrac{e^{x}+e^{-x}}{2}\right)}$
⇒ ${\dfrac{d}{dx}\left( \cosh x\right) =\dfrac{d}{dx}\left( \dfrac{e^{x}}{2}\right) +\dfrac{d}{dx}\left( \dfrac{e^{-x}}{2}\right)}$ …..(ii)
Since ${\dfrac{d}{dx}\left( e^{x}\right) =e^{x}}$ and ${\dfrac{d}{dx}\left( e^{-x}\right) =-e^{-x}}$ …..(iii)
Now, using (iii) in (ii), we get
⇒ ${\dfrac{d}{dx}\left( \cosh x\right) =\dfrac{1}{2}\left( e^{x}\right) +\dfrac{1}{2}\left( -e^{-x}\right)}$
⇒ ${\dfrac{d}{dx}\left( \cosh x\right) =\dfrac{e^{x}-e^{-x}}{2}}$
⇒ ${\dfrac{d}{dx}\left( \cosh x\right) =\sinh x}$
We can now obtain the derivative formula for hyperbolic tangent functions using the hyperbolic sine and cosine functions:
${\tanh x}$ = ${\dfrac{\sinh x}{\cosh x}}$ …..(i)
Differentiating both sides of (i) with respect to x,
${\dfrac{d}{dx}\left( \tanh x\right) =\dfrac{d}{dx}\left( \dfrac{\sinh x}{\cosh x}\right)}$
= ${\dfrac{\dfrac{d}{dx}\left( \sinh x\right) \cosh x-\sinh x\dfrac{d}{dx}\left( \cosh x\right) }{\cosh ^{2}x}}$ …..(ii)
As we know, the derivative of sinh x is cosh x, and the derivative of cosh x is sinh x.
Thus, from (ii), we get
${\dfrac{d}{dx}\left( \tanh x\right) =\dfrac{\cosh ^{2}x-\sinh ^{2}x}{\cosh ^{2}x}}$
= ${\dfrac{1}{\cosh ^{2}x}}$ (since, cosh2 x – sinh2 x = 1)
= ${sech ^{2}x}$ (since, ${\dfrac{1}{\cosh x}}$ = ${sech \ x}$)
Thus, ${\dfrac{d}{dx}\left( \tanh x\right) =sech ^{2}x}$
In addition to the basic function, the derivatives of three other hyperbolic functions are as follows:
As we know, cosech x is the reciprocal function of sinh x; thus
${cosech \ x}$ = ${\dfrac{1}{\sinh x}}$ …..(i)
Now, differentiating both sides of (i) with respect to x,
${\dfrac{d}{dx}\left( cosech \ x\right) =\dfrac{d}{dx}\left( \dfrac{1}{\sinh x}\right)}$
= ${\dfrac{\dfrac{d}{dx}\left( 1\right) \sinh x-\left( 1\right) \dfrac{d}{dx}\left( \sinh x\right) }{\sinh ^{2}x}}$
= ${-\dfrac{1}{\sinh x}\cdot \dfrac{coshx}{\sinh x}}$
= ${-cosech \ x\cdot \coth x}$
Thus, ${\dfrac{d}{dx}\left( cosech \ x\right) =-cosech \ x\cdot \coth x}$
As we know, sech x is the reciprocal function of cosh x; thus
${sech \ x}$ = ${\dfrac{1}{\cosh x}}$ …..(i)
Now, differentiating both sides of (i) with respect to x,
${\dfrac{d}{dx}\left( sech \ x\right) =\dfrac{d}{dx}\left( \dfrac{1}{\cosh x}\right)}$
= ${\dfrac{\dfrac{d}{dx}\left( 1\right) \cosh x-\left( 1\right) \dfrac{d}{dx}\left( \cosh x\right) }{\cosh ^{2}x}}$
= ${-\dfrac{\sinh x}{\cosh ^{2}x}}$ (since, ${\dfrac{d}{dx}\left( 1\right) =0}$)
= ${-\dfrac{1}{\cosh x}\cdot \dfrac{sinhx}{\cosh x}}$
= ${-sech \ x\cdot \tanh x}$
Thus, ${\dfrac{d}{dx}\left( sech \ x\right) =-sech \ x\cdot \tanh x}$
As we know, coth x is the reciprocal function of tanh x. Similarly, coth x can be expressed as:
${\coth x}$ = ${\dfrac{\cosh x}{\sinh x}}$ …..(i)
Differentiating both sides of (i) with respect to x,
${\dfrac{d}{dx}\left( \coth x\right) =\dfrac{d}{dx}\left( \dfrac{\cosh x}{\sinh x}\right)}$
= ${\dfrac{\dfrac{d}{dx}\left( \cosh x\right) \sinh x-\cosh x\dfrac{d}{dx}\left( \sinh x\right) }{\sinh ^{2}x}}$
= ${\dfrac{d}{dx}\left( \tanh x\right) =\dfrac{\sinh ^{2}x-\cosh ^{2}x}{\sinh ^{2}x}}$ (since, ${\dfrac{d}{dx}\left( \sinh x\right) =\cosh x}$ and ${\dfrac{d}{dx}\left( \cosh x\right) =\sinh x}$)
= ${-\dfrac{\left( \cosh ^{2}x-\sinh ^{2}x\right) }{\sinh ^{2}x}}$
= ${-\dfrac{1}{\sinh ^{2}x}}$ (since, cosh2 x – sinh2 x = 1)
= ${-cosech ^{2}x}$ (since, ${\dfrac{1}{\sinh x}}$ = ${cosech \ x}$)
Thus, ${\dfrac{d}{dx}\left( \coth x\right) =-cosech ^{2}x}$
Here is a summary of all the derivatives of the hyperbolic functions with their domains:
Similar to finding the derivative of the hyperbolic functions, we can find the derivatives of the inverse hyperbolic functions using the inverse function theorem.
If x = sinh y …..(i)
Then, from the inverse function theorem, we get
y = arcsinh x
Now, to derive the inverse hyperbolic sine function (arcsinh), we need to use the derivative of the sinh function:
${\dfrac{d}{dx}\left( \sinh x\right) =\cosh x}$
Differentiating both sides of (i) with respect to x,
⇒ ${\dfrac{d}{dx}\left( x\right) =\dfrac{d}{dx}\left( \sinh y\right)}$
⇒ ${1=\cosh y\cdot \dfrac{dy}{dx}}$
⇒ ${\dfrac{dy}{dx}=\dfrac{1}{\cosh y}}$ …..(ii)
Using hyperbolic trigonometric identity, we have
cosh2 x – sinh2 x = 1 ⇒ cosh2 x = 1 + sinh2 x …..(iii)
Substituting the value (iii) in (ii), we get
⇒ ${\dfrac{dy}{dx}=\dfrac{1}{\sqrt{1+\sinh ^{2}y}}}$
⇒ ${\dfrac{dy}{dx}=\dfrac{1}{\sqrt{1+x^{2}}}}$
Thus, ${\dfrac{d}{dx}\left( arcsinh \ x\right) =\dfrac{1}{\sqrt{1+x^{2}}}}$
If x = cosh y …..(i)
Then, from the inverse function theorem, we get
y = arccosh x
Now, to derive the inverse hyperbolic cosine function (arccosh), we need to use the derivative of the cosh function:
${\dfrac{d}{dx}\left( \cosh x\right) =\sinh x}$
Now, differentiating both sides of (i) with respect to x,
⇒ ${\dfrac{d}{dx}\left( x\right) =\dfrac{d}{dx}\left( \cosh y\right)}$
⇒ ${1=\sinh y\cdot \dfrac{dy}{dx}}$
⇒ ${\dfrac{dy}{dx}=\dfrac{1}{\sinh y}}$ …..(ii)
Using hyperbolic trigonometric identity, we have
cosh2 x – sinh2 x = 1 ⇒ sinh2 x = cosh2 x – 1 …..(iii)
Substituting the value (iii) in (ii), we get
⇒ ${\dfrac{dy}{dx}=\dfrac{1}{\sqrt{\cosh ^{2}y-1}}}$
⇒ ${\dfrac{dy}{dx}=\dfrac{1}{\sqrt{x^{2}-1}}}$
Thus, ${\dfrac{d}{dx}\left( arccosh \ x\right) =\dfrac{1}{\sqrt{x^{2}-1}}}$, here x > 1
If x = tanh y …..(i)
Then, from the inverse function theorem, we get
y = arctanh x
Now, to derive the inverse hyperbolic tangent function (arctanh), we need to use the derivative of the tanh function:
${\dfrac{d}{dx}\left( \tanh x\right) =sech ^{2}x}$
Differentiating both sides of (i) with respect to x,
⇒ ${\dfrac{d}{dx}\left( x\right) =\dfrac{d}{dx}\left( \tanh y\right)}$
⇒ ${1=sech ^{2}y\cdot \dfrac{dy}{dx}}$
⇒ ${\dfrac{dy}{dx}=\dfrac{1}{sech ^{2}y}}$ …..(ii)
As we know the hyperbolic identity tanh2 x + sech2 x = 1 ⇒ sech2 x = 1 – tanh2 x …..(iii)
Using (iii) in (ii), we get
⇒ ${\dfrac{dy}{dx}=\dfrac{1}{1-\tanh ^{2}y}}$
⇒ ${\dfrac{dy}{dx}=\dfrac{1}{1-x^{2}}}$
Thus, ${\dfrac{d}{dx}\left( arctanh \ x\right) =\dfrac{1}{1-x^{2}}}$, here |x| < 1
Now, to find the derivative of arccosech x, we will use the derivative of the hyperbolic cosecant function (cosech).
If y = arccosech x
⇒ x = cosech y …..(i)
Differentiating both sides of (i) with respect to x,
⇒ ${\dfrac{d}{dx}\left( x\right) =\dfrac{d}{dx}\left( cosech \ y\right)}$
Since, ${\dfrac{d}{dx}\left( cosech \ x\right) =-cosech \ x\cdot \coth x}$
⇒ ${1=-cosech \ y\cdot \coth y\cdot \dfrac{dy}{dx}}$
⇒ ${\dfrac{dy}{dx}=-\dfrac{1}{cosech \ y\cdot \coth y}}$ …..(ii)
As we know the hyperbolic identity coth2 x – cosech2 x = 1 ⇒ coth2 x = 1 + cosech2 x …..(iii)
Using (iii) in (ii), we get
⇒ ${\dfrac{dy}{dx}=-\dfrac{1}{cosech \ y\cdot \sqrt{1+cosech ^{2}y }}}$
⇒ ${\dfrac{dy}{dx}=-\dfrac{1}{\left| x\right| \sqrt{1-x^{2} }}}$
Thus, ${\dfrac{d}{dx}\left( arccosech \ x\right) =-\dfrac{1}{\left| x\right| \sqrt{1-x^{2} }}}$, here x ≠ 0
Similarly, the derivative of arcsech x can be determined using the derivative of the hyperbolic secant function (sech).
If y = arcsech x
⇒ x = sech y …..(i)
Differentiating both sides of (i) with respect to x,
⇒ ${\dfrac{d}{dx}\left( x\right) =\dfrac{d}{dx}\left( sech \ y\right)}$
Since, ${\dfrac{d}{dx}\left( sech \ x\right) =-sech \ x\cdot \tanh x}$
⇒ ${1=-sech \ y\cdot \tanh y\cdot \dfrac{dy}{dx}}$
⇒ ${\dfrac{dy}{dx}=-\dfrac{1}{sech \ y\cdot \tanh y}}$ …..(ii)
As we know the hyperbolic identity tanh2 x + sech2 x = 1 ⇒ tanh2 x = 1 – sech2 x …..(iii)
Using (iii) in (ii), we get
⇒ ${\dfrac{dy}{dx}=-\dfrac{1}{sech \ y\cdot \sqrt{1-sech ^{2}y }}}$
⇒ ${\dfrac{dy}{dx}=-\dfrac{1}{x\sqrt{1-x^{2} }}}$
Thus, ${\dfrac{d}{dx}\left( arcsech \ x\right) =-\dfrac{1}{x\sqrt{1-x^{2} }}}$, here 0 < x < 1
Now, we will derive the derivative of arccoth x using the derivative of the hyperbolic cotangent function (coth).
If y = arccoth x
⇒ x = coth y …..(i)
Differentiating both sides of (i) with respect to x,
⇒ ${\dfrac{d}{dx}\left( x\right) =\dfrac{d}{dx}\left( \coth y\right)}$
Since, ${\dfrac{d}{dx}\left( \coth x\right) =-cosech ^{2}x}$
⇒ ${1=-cosech ^{2}y\cdot \dfrac{dy}{dx}}$
⇒ ${\dfrac{dy}{dx}=\dfrac{1}{-cosech ^{2}y}}$ …..(ii)
As we know the hyperbolic identity coth2 x – cosech2 x = 1 ⇒ -cosech2 x = 1 – coth2 x …..(iii)
Using (iii) in (ii), we get
⇒ ${\dfrac{dy}{dx}=\dfrac{1}{1-\coth ^{2}y}}$
⇒ ${\dfrac{dy}{dx}=\dfrac{1}{1-x^{2}}}$
Thus, ${\dfrac{d}{dx}\left( arccoth \ x\right) =\dfrac{1}{1-x^{2}}}$, here |x| > 1
Here is a summary of derivatives of all the inverse hyperbolic functions with their domains:
Find the derivatives of the following hyperbolic function:
ln(tanh (x3 + 2))
Given, f(x) = ln(tanh (x3 + 2))
Now, differentiating with respect to x,
f’(x) = ${\dfrac{1}{\tanh \left( x^{3}+2\right) }\times \left( sech ^{2}\left( x^{3}+2\right) \right) \times \left( 3x^{2}\right)}$
= ${\dfrac{3x^{2}sech ^{2}\left( x^{3}+2\right) }{\tanh \left( x^{3}+2\right) }}$
Find the derivatives of the inverse hyperbolic function:
cosh-1(e3x)
Given, f(x) = cosh-1(e3x)
Now, differentiating with respect to x,
f’(x) = ${\dfrac{1}{\sqrt{\left( e^{3r}\right) ^{2}-1}}\times \left( 3e^{3r}\right)}$
= ${\dfrac{3e^{3x}}{\sqrt{e^{6x}-1}}}$
Last modified on October 15th, 2024