Table of Contents
Last modified on December 9th, 2024
In calculus, the derivative of a polynomial represents the rate of change of the function with respect to its variable.
For example, for the function f(x) = x2, its derivative is f’(x) = 2x, indicating how the value of f(x) changes as x changes.
Here are the rules we follow to differentiate polynomials:
Statement
For any real number n, the derivative of f(x) = xn is:
${f’\left( x\right) =\dfrac{d}{dx}\left( x^{n}\right) =n\cdot x^{n-1}}$
Proof
For f(x) = xn, where n is a positive integer, we have
${f’\left( x\right) =\lim _{h\rightarrow 0}\dfrac{\left( x+h\right) ^{n}-x^{n}}{h}}$
Expanding (x + h)n using the binomial theorem,
${\left( x+h\right) ^{n}=x^{n}+nx^{n-1}h+\begin{pmatrix} n \\ 2 \end{pmatrix}x^{n-2}h^{2}+\begin{pmatrix} n \\ 3 \end{pmatrix}x^{n-3}h^{3}+\ldots +nxh^{n-1}+h^{n}}$
Subtracting xn,
⇒ ${\left( x+h\right) ^{n}-x^{n}=nx^{n-1}h+\begin{pmatrix} n \\ 2 \end{pmatrix}x^{n-2}h^{2}+\begin{pmatrix} n \\ 3 \end{pmatrix}x^{n-3}h^{3}+\ldots +nxh^{n-1}+h^{n}}$
Now, dividing both sides by h,
${\dfrac{\left( x+h\right) ^{n}-x^{n}}{h}=\dfrac{nx^{n-1}h+\begin{pmatrix} n \\ 2 \end{pmatrix}x^{n-2}h^{2}+\begin{pmatrix} n \\ 3 \end{pmatrix}x^{n-3}h^{3}+\ldots +nxh^{n-1}+h^{n}}{h}}$
⇒ ${\dfrac{\left( x+h\right) ^{n}-x^{n}}{h}=nx^{n-1}+\begin{pmatrix} n \\ 2 \end{pmatrix}x^{n-2}h+\begin{pmatrix} n \\ 3 \end{pmatrix}x^{n-3}h^{2}+\ldots +nxh^{n-2}+h^{n-1}}$
Applying the limit definition of the derivative, we get
⇒ ${f’\left( x\right) =\lim _{h\rightarrow 0}\left( nx^{n-1}+\begin{pmatrix} n \\ 2 \end{pmatrix}x^{n-2}h+\begin{pmatrix} n \\ 3 \end{pmatrix}x^{n-3}h^{2}+\ldots +nxh^{n-2}+h^{n-1}\right)}$
⇒ f’(x) = nxn – 1
Thus, the power rule is derived.
Statement
For any constant c, the derivative of f(x) = c is:
${f’\left( x\right) =\dfrac{d}{dx}\left( c\right) =0}$
Proof
For f(x) = c, where c is any constant, we have
f(x + h) = c
Now, applying the limit definition of the derivative, we get
${f’\left( x\right) =\lim _{h\rightarrow 0}\dfrac{f\left( x+h\right) -f\left( x\right) }{h}}$
⇒ ${f’\left( x\right) =\lim _{h\rightarrow 0}\dfrac{c-c}{h}}$
⇒ ${f’\left( x\right) =\lim _{h\rightarrow 0}\dfrac{0}{h}}$
⇒ ${f’\left( x\right) =\lim _{h\rightarrow 0}0}$
⇒ ${f’\left( x\right) =0}$
Thus, the constant rule is derived.
Statement
The derivative of the sum of functions is the sum of their derivatives:
${\dfrac{d}{dx}\left[ f\left( x\right) +g\left( x\right) \right] =\dfrac{d}{dx}f\left( x\right) +\dfrac{d}{dx}g\left( x\right)}$
⇒ ${\dfrac{d}{dx}\left[ f\left( x\right) +g\left( x\right) \right] =f’\left( x\right) +g’\left( x\right)}$
The derivative of the difference of functions is the difference of their derivatives:
${\dfrac{d}{dx}\left[ f\left( x\right) -g\left( x\right) \right] =\dfrac{d}{dx}f\left( x\right) -\dfrac{d}{dx}g\left( x\right)}$
⇒ ${\dfrac{d}{dx}\left[ f\left( x\right) -g\left( x\right) \right] =f’\left( x\right) -g’\left( x\right)}$
Proof
Let us consider s(x) = f(x) ± g(x), where f(x) and g(x) are differentiable functions.
Applying the limit definition of the derivative, we get
${s’\left( x\right) =\lim _{h\rightarrow 0}\dfrac{s\left( x+h\right) -s\left( x\right) }{h}}$
By substituting s(x + h) = f(x + h) ± g(x + h) and s(x) = f(x) ± g(x), we get
${s’\left( x\right) =\lim _{h\rightarrow 0}\dfrac{\left[ f\left( x+h\right) \pm g\left( x+h\right) \right] -\left[ f\left( x\right) \pm g\left( x\right) \right] }{h}}$
Now, the derivative of the sum of functions is:
${s’\left( x\right) =\lim _{h\rightarrow 0}\dfrac{\left[ f\left( x+h\right) +g\left( x+h\right) \right] -\left[ f\left( x\right) +g\left( x\right) \right] }{h}}$
Rearranging and regrouping the terms,
⇒ ${s’\left( x\right) =\lim _{h\rightarrow 0}\left[ \dfrac{f\left( x+h\right) -f\left( x\right) }{h}+\dfrac{g\left( x+h\right) -g\left( x\right) }{h}\right]}$
Applying the sum law for limits and the definition of the derivative,
⇒ ${s’\left( x\right) =\lim _{h\rightarrow 0}\dfrac{f\left( x+h\right) -f\left( x\right) }{h}+\lim _{h\rightarrow 0}\dfrac{g\left( x+h\right) -g\left( x\right) }{h}}$
⇒ ${s’\left( x\right) =f’\left( x\right) +g’\left( x\right)}$ …..(i)
Again, the derivative of the difference of functions is:
${s’\left( x\right) =\lim _{h\rightarrow 0}\dfrac{\left[ f\left( x+h\right) -g\left( x+h\right) \right] -\left[ f\left( x\right) -g\left( x\right) \right] }{h}}$
Rearranging and regrouping the terms,
⇒ ${s’\left( x\right) =\lim _{h\rightarrow 0}\left[ \dfrac{f\left( x+h\right) -f\left( x\right) }{h}-\dfrac{g\left( x+h\right) +g\left( x\right) }{h}\right]}$
Applying the difference law for limits and the definition of the derivative,
⇒ ${s’\left( x\right) =\lim _{h\rightarrow 0}\dfrac{f\left( x+h\right) -f\left( x\right) }{h}-\lim _{h\rightarrow 0}\dfrac{g\left( x+h\right) -g\left( x\right) }{h}}$
⇒ ${s’\left( x\right) =f’\left( x\right) -g’\left( x\right)}$ …..(ii)
From (i) and (ii), we get
${\dfrac{d}{dx}\left[ f\left( x\right) \pm g\left( x\right) \right] =f’\left( x\right) \pm g’\left( x\right)}$
Thus, the sum and difference rule is derived.
Statement
The derivative of a constant multiplied by a function is the constant multiplied by the derivative of the function:
${\dfrac{d}{dx}\left[ c\cdot f\left( x\right) \right] =c\cdot f’\left( x\right)}$
Proof
Let g(x) = c ⋅ f(x), where c is a constant and f(x) is differentiable.
Applying the limit definition of the derivative, we get
${g’\left( x\right) =\lim _{h\rightarrow 0}\dfrac{g\left( x+h\right) -g\left( x\right) }{h}}$
Now, substituting g(x) = c ⋅ f(x), we get
${g’\left( x\right) =\lim _{h\rightarrow 0}\dfrac{c\cdot f\left( x+h\right) -c\cdot f\left( x\right) }{h}}$
Since c is constant, factoring the constant out, we get
${g’\left( x\right) =c\cdot \lim _{h\rightarrow 0}\dfrac{f\left( x+h\right) -f\left( x\right) }{h}}$
Applying the limit definition of the derivative, we get
${g’\left( x\right) =c\cdot f’\left( x\right)}$
⇒ ${\dfrac{d}{dx}\left[ c\cdot f\left( x\right) \right] =c\cdot f’\left( x\right)}$
Thus, the constant multiple rule is derived.
Finding the Derivative of f(x) = 5x3 – 4x2 + 7x – 2
f(x) = 5x3 – 4x2 + 7x – 2
By the constant multiple rule,
f’(x) = 5(x3)’ – 4(x2)’ + 7(x)’ – (2)’
By the constant rule,
⇒ f’(x) = 5(x3)’ – 4(x2)’ + 7(x)’ – 0
By the power rule to each term,
⇒ f’(x) = 5 ⋅ 3x3 – 1 – 4 ⋅ 2x2 – 1 + 7x1 – 1
Simplifying,
⇒ f’(x) = 15x2 – 8x + 7
Thus, the derivative of f(x) = 5x3 – 4x2 + 7x – 2 is
f’(x) = 15x2 – 8x + 7
Again, let us consider another function g(x) = 2x4 – 3x3 + x – 5
By the constant multiple rule,
g’(x) = 2(x4)’ – 3(x3)’ + (x)’ – (5)’
By the constant rule,
⇒ g’(x) = 2(x4)’ – 3(x3)’ + (x)’ – 0
By the power rule to each term,
⇒ g’(x) = 2 ⋅ 4x4 – 1 – 3 ⋅ 3x3 – 1 + x1 – 1
Simplifying,
⇒ g’(x) = 8x3 – 9x2 + 1
Thus, the derivative of g(x) = 2x4 – 3x3 + x – 5 is
g’(x) = 8x3 – 9x2 + 1
Geometrically, the derivative of a function represents the slope of the tangent line to the polynomial’s graph at any point.
For example, if f(x) = x2, its derivative is f’(x) = 2x
When plotting f(x) and f’(x), we get
Here, the above graph indicates that the slope of the tangent line at any point x is 2x
Differentiate the following polynomial functions:
a) f(x) = 3x4 – 2x3 + x2 – 5x + 8
b) g(x) = 2x6 – 3x4 + x2
c) h(x) = x5 + 6x3 – 4x + 2
a) Given, f(x) = 3x4 – 2x3 + x2 – 5x + 8
f’(x) = 3(x4)’ – 2(x3)’ + (x2)’ – 5(x)’ + (8)’
⇒ f’(x) = 3 ⋅ 4x4 – 1 – 2 ⋅ 3x3 – 1 + 2x2 – 1 – 5x1 – 1 + 0
⇒ f’(x) = 12x3 – 6x2 + 2x – 5
b) Given, g(x) = 2x6 – 3x4 + x2
g’(x) = 2(x6)’ – 3(x4)’ + (x2)’
⇒ g’(x) = 2 ⋅ 6x6 – 1 – 3 ⋅ 4x4 – 1 + 2x2 – 1
⇒ g’(x) = 12x5 – 12x3 + 2x
c) Given, h(x) = x5 + 6x3 – 4x + 2
h’(x) = (x5)’ + 6(x3)’ – 4(x)’ + (2)’
⇒ h’(x) = 5x5 – 1 + 6 ⋅ 3x3 – 1 – 4x1 – 1 + 0
⇒ h’(x) = 5x4 + 18x2 – 4
If the function f(x) = x4 + 7x3 – 5x – 9, find:
a) f’(x) using the power rule
b) the value of f’(x) at x = 3
Given, f(x) = x4 + 7x3 – 5x – 9
a) f’(x) = (x4)’ + 7(x3)’ – 5(x)’ – (9)’
⇒ f’(x) = 4x4 – 1 + 7 ⋅ 3x3 – 1 – 5x1 – 1 – 0
⇒ f’(x) = 4x3 + 21x2 – 5
b) At x = 3,
f’(x) = f’(3)
⇒ f’(x) = 4(3)3 + 21(3)2 – 5
⇒ f’(x) = 108 + 189 – 5
⇒ f’(x) = 292
Last modified on December 9th, 2024