Last modified on January 6th, 2025

chapter outline

 

Polynomial Regression

Polynomial regression is a statistical method to analyze and model the relationship between two variables, a dependent variable (y) and an independent variable (x) when the data exhibits a curved pattern. Unlike linear regression, which fits a straight line to data, polynomial regression fits a polynomial equation to capture the underlying trends effectively.

Linear and Polynomial Regression

General Form

The general equation of a polynomial regression model is:

y = a0 + a1x + a2x2 + … + anxn + ϵ

Here,

  • a0, a1, …, an are the coefficients of the polynomial terms
  • n is the degree of the polynomial
  • ϵ is the error term, representing deviations between predicted and actual values

Difference with Linear Regression

Although the equation is polynomial in x, the regression remains linear with respect to the coefficients a0, a1, …, an. By incorporating higher-degree terms, such as quadratic or cubic components, the model can show non-linear patterns in the data.

Polynomial regression is useful when the data follows a curved pattern, where simple linear regression fails to capture the trend accurately. It predicts a curve that matches the underlying data.

Mathematical Representation

When representing the polynomial regression model mathematically, we first determine the coefficients. 

It is done by minimizing the sum of squared errors (SSE), which is given by:

SSE = ${\sum ^{m}_{i=1}\left( y_{i}-\left( a_{0}+a_{1}x_{i}+a_{2}x_{i}^{2}+\ldots +a_{n}x_{i}^{n}\right) \right) ^{2}}$

The coefficients are found by solving a system of equations derived using partial derivatives of SSE with respect to each coefficient. These equations are solved using a method called matrix algebra.

In Matrix Form

The polynomial regression problem can be written in matrix form:

y = Xa + ϵ

Here,

y = ${\begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{m} \end{bmatrix}}$ is the vector of dependent variables

X = ${{\begin{bmatrix}1 & x_{1} & \cdots & x_{1}^{n} \\ 1 & x_{2} & \cdots & x_{2}^{n} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{m} & \cdots & x_{m}^{n} \\ \end{bmatrix}}}$ is the design matrix

a = ${\begin{bmatrix} a_{0} \\ a_{1} \\ \vdots \\ a_{n} \end{bmatrix}}$ is the vector of the coefficients.

The least squares solution is given by: a = (XTX)-1XTy

Problem: Fitting a 2nd-degree POLYNOMIAL

Let us fit a 2nd-degree polynomial regression model y = a0 + a1x + a2x2 to the following dataset:

xy
12
24
39
416

Step 1. Setting Up the Design Matrix (X) 

X = ${\begin{bmatrix} 1 & 1 & 1^{2} \\ 1 & 2 & 2^{2} \\ 1 & 3 & 3^{2} \\ 1 & 4 & 4^{2} \end{bmatrix}}$ = ${\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \\ 1 & 4 & 16 \end{bmatrix}}$

Step 2. Setting Up the Dependent Variable Vector (y) 

y = ${\begin{bmatrix} 2 \\ 4 \\ 9 \\ 16 \end{bmatrix}}$

Step 3. Solving for Coefficients (a) 

a = (XTX)-1XT

Here, 

XT = ${\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 4 & 9 & 16 \end{bmatrix}}$

On multiplying XT and X, we get

XTX = ${\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 4 & 9 & 16 \end{bmatrix}\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \\ 1 & 4 & 16 \end{bmatrix}}$

= ${\begin{bmatrix} 4 & 10 & 30 \\ 10 & 30 & 100 \\ 30 & 100 & 354 \end{bmatrix}}$ …..(i)

Now, calculating XTy, we get

XTy = ${\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 4 & 9 & 16 \end{bmatrix}\begin{bmatrix} 2 \\ 4 \\ 9 \\ 16 \end{bmatrix}}$ = ${\begin{bmatrix} 31 \\ 101 \\ 355 \end{bmatrix}}$ …..(ii)

As we know, the inverse of a matrix A, denoted by A-1, is defined as

${A^{-1}=\dfrac{1}{\det \left( A\right) }\cdot Adj\left( A\right)}$ …..(iii)

Here, 

  • det(A) = determinant of A and
  • Adj(A) = adjugate or adjoint matrix (the transpose of the cofactor matrix)

For A = ${\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}}$ …..(iv)

det(A) = a(ei – fh) – b(di – fg) + c(dh – eg) …..(v)

Now, comparing matrices (i) and (iv), we have

a = 4, b = 10, c = 30, d = 10, e = 30, f = 100, g = 30, h = 100, and i = 354

Substituting these values in (v),

det(A) = 4[(30)(354) – (100)(100)] – 10[(10)(354) – (100)(30)] + 30[(10)(100) – (30)(30)]

⇒ det(A) = 4[10620 – 10000] – 10[3540 – 3000] + 30[1000 – 900]

 ⇒ det(A) = 4(620) – 10(540) + 30(100)

⇒ det(A) = 2480 – 5400 + 3000

⇒ det(A) = 80 …..(vi)

To find the cofactor matrix Adj(A), we calculate the determinant of each 2 × 2 matrix by removing the row and column of each element.

Calculating the first row of cofactors, we get

1. Cofactor of a11 (4):

Minor = ${\begin{bmatrix} 30 & 100 \\ 100 & 354 \end{bmatrix}}$

Determinant = (30)(354) – (100)(100) = 10620 – 10000 = 620

Thus, Cofactor = +620

2. Cofactor of a12 (10):

Minor = ${\begin{bmatrix} 10 & 100 \\ 30 & 354 \end{bmatrix}}$ 

Determinant = (10)(354) – (100)(30) = 3540 – 3000 = 540

Thus, Cofactor = -540

Note: The negative sign appears due to the alternating sign rule (-1)i + j, which ensures the correct orientation of the cofactor matrix.

3. Cofactor of a13 (30):

Minor = ${\begin{bmatrix} 10 & 30 \\ 30 & 100 \end{bmatrix}}$

Determinant = (10)(100) – (30)(30) = 1000 – 900 = 100

Thus, Cofactor = +100

Calculating the second row cofactors, we get

1. Cofactor of a21 (10):

Minor = ${\begin{bmatrix} 10 & 30 \\ 100 & 354 \end{bmatrix}}$

Determinant = (10)(354) – (30)(100) = 3540 – 3000 = 540

Thus, the cofactor = -540

2. Cofactor of a22 (30):

Minor = ${\begin{bmatrix} 4 & 30 \\ 30 & 354 \end{bmatrix}}$

Determinant = (4)(354) – (30)(30) = 1416 – 900 = 516

Thus, the cofactor = +516

3. Cofactor of a23 (100):

Minor = ${\begin{bmatrix} 4 & 10 \\ 30 & 100 \end{bmatrix}}$

Determinant = (4)(100) – (10)(30) = 400 – 300 = 100

Thus, the cofactor = -100

Calculating the third row cofactors, we get

1. Cofactor of a31 (30):

Minor = ${\begin{bmatrix} 10 & 30 \\ 30 & 100 \end{bmatrix}}$

Determinant = (10)(100) – (30)(30) = 1000 – 900 = 100

Thus, the cofactor = +100

2. Cofactor of a32 (100):

Minor = ${\begin{bmatrix} 4 & 30 \\ 10 & 100 \end{bmatrix}}$

Determinant = (4)(100) – (30)(10) = 400 – 300 = 100

Thus, the cofactor = -100

3. Cofactor of a33 (354):

Minor = ${\begin{bmatrix} 4 & 10 \\ 10 & 30 \end{bmatrix}}$

Determinant = (4)(30) – (10)(10) = 120 – 100 = 20

Thus, the cofactor = +20

Hence, the cofactor matrix = ${\begin{bmatrix} 620 & -540 & 100 \\ -540 & 516 & -100 \\ 100 & -100 & 20 \end{bmatrix}}$

Adj(A) = transpose of the cofactor matrix = ${\begin{bmatrix} 620 & -540 & 100 \\ -540 & 516 & -100 \\ 100 & -100 & 20 \end{bmatrix}^{T}}$

⇒ Adj(A) = ${\begin{bmatrix} 620 & -540 & 100 \\ -540 & 516 & -100 \\ 100 & -100 & 20 \end{bmatrix}}$ …..(vii)

Now, by substituting (vi) and (vii) in (iii), we get

A-1 = (XTX)-1 = ${\dfrac{1}{80}\begin{bmatrix} 620 & -540 & 100 \\ -540 & 516 & -100 \\ 100 & -100 & 20 \end{bmatrix}}$

⇒ (XTX)-1 = ${\begin{bmatrix} 7\cdot 75 & -6\cdot 75 & 1\cdot 25 \\ -6\cdot 75 & 6\cdot 45 & -1\cdot 25 \\ 1\cdot 25 & -1\cdot 25 & 0\cdot 25 \end{bmatrix}}$ …..(viii)

Now, using (ii) and (viii), we get

a = ${\begin{bmatrix} 7\cdot 75 & -6\cdot 75 & 1\cdot 25 \\ -6\cdot 75 & 6\cdot 45 & -1\cdot 25 \\ 1\cdot 25 & -1\cdot 25 & 0\cdot 25 \end{bmatrix}\begin{bmatrix} 31 \\ 101 \\ 355 \end{bmatrix}}$

⇒ a = ${\begin{bmatrix} 2\cdot 25 \\ -1\cdot 55 \\ 1\cdot 25 \end{bmatrix}}$

The coefficients are a0 = 2.25, a1 = -1.55, and a2 = 1.25

Thus, the polynomial regression equation is:

y = 2.25 – 1.55x + 1.25x2 

Alternatively, polynomial regression can be solved computationally using Python or other tools instead of lengthy manual derivations.

Solved Example

Solve the polynomial regression for:
x = [1, 3, 5, 7]
y = [2, 10, 22, 38]

Solution:

The polynomial regression model is y = a0 + a1x + a2x2 
Here,
The design matrix for a third-degree polynomial regression is constructed as follows:
X = ${\begin{bmatrix} 1 & x_{1} & x_{1}^{2} \\ 1 & x_{2} & x_{2}^{2} \\ 1 & x_{3} & x_{3}^{2} \\ 1 & x_{4} & x_{4}^{2} \end{bmatrix}}$
Substituting the values of x = [1, 3, 5, 7],
⇒ X = ${\begin{bmatrix} 1 & 1 & 1^{2} \\ 1 & 3 & 3^{2} \\ 1 & 5 & 5^{2} \\ 1 & 7 & 7^{2} \end{bmatrix}}$
⇒ X = ${\begin{bmatrix} 1 & 1 & 1 \\ 1 & 3 & 9 \\ 1 & 5 & 25 \\ 1 & 7 & 49 \end{bmatrix}}$
The transpose of X is XT = ${\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 3 & 5 & 7 \\ 1 & 9 & 25 & 49 \end{bmatrix}}$
Now, XTX = ${\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 3 & 5 & 7 \\ 1 & 9 & 25 & 49 \end{bmatrix}\begin{bmatrix} 1 & 1 & 1 \\ 1 & 3 & 9 \\ 1 & 5 & 25 \\ 1 & 7 & 49 \end{bmatrix}}$
⇒ XTX = ${\begin{bmatrix} 4 & 16 & 84 \\ 16 & 84 & 480 \\ 84 & 480 & 3196 \end{bmatrix}}$
Now, XTy = ${\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 3 & 5 & 7 \\ 1 & 9 & 25 & 49 \end{bmatrix}\begin{bmatrix} 2 \\ 10 \\ 22 \\ 38 \end{bmatrix}}$
⇒ XTy = ${\begin{bmatrix} 72 \\ 408 \\ 2820 \end{bmatrix}}$ …..(i)
det(XTX) = 4[(84)(3196) – (480)(480)] – 16[(16)(3196) – (480)(84)] + 84[(16)(480) – (84)(84)]
⇒ det(XTX) = 31488
Now, for the cofactor matrix, we have
Cofactor of a11 (4):
Minor = ${\begin{bmatrix} 84 & 480 \\ 480 & 3196 \end{bmatrix}}$
Determinant = (84)(3196) – (480)(480) = 38064
Thus, the cofactor = +38064
Cofactor of a12 (16):
Minor = ${\begin{bmatrix} 16 & 480 \\ 84 & 3196 \end{bmatrix}}$
Determinant = (16)(3196) – (480)(84) = 10816
Thus, the cofactor = -10816
Cofactor of a13 (84):
Minor = ${\begin{bmatrix} 16 & 84 \\ 84 & 480 \end{bmatrix}}$
Determinant = (16)(480) – (84)(84) = 624
Thus, the cofactor = +624
Cofactor of a21 (16):
Minor = ${\begin{bmatrix} 16 & 84 \\ 480 & 3196 \end{bmatrix}}$
Determinant = (16)(3196) – (84)(480) = 10816
Thus, the cofactor = -10816
Cofactor of a22 (84):
Minor = ${\begin{bmatrix} 4 & 84 \\ 84 & 3196 \end{bmatrix}}$
Determinant = (4)(3196) – (84)(84) = 5728
Thus, the cofactor = +5728
Cofactor of a23 (480):
Minor = ${\begin{bmatrix} 4 & 16 \\ 84 & 480 \end{bmatrix}}$
Determinant = (4)(480) – (16)(84) = 576
Thus, the cofactor = -576
Cofactor of a31 (84):
Minor = ${\begin{bmatrix} 16 & 84 \\ 84 & 480 \end{bmatrix}}$
Determinant = (16)(480) – (84)(84) = 624
Thus, the cofactor = +624
Cofactor of a32 (480):
Minor = ${\begin{bmatrix} 4 & 84 \\ 16 & 480 \end{bmatrix}}$
Determinant = (4)(480) – (16)(84) = 576
Thus, the cofactor = -576
Cofactor of a33 (3196):
Minor = ${\begin{bmatrix} 4 & 16 \\ 16 & 84 \end{bmatrix}}$
Determinant = (4)(84) – (16)(16) = 80
Thus, the cofactor = +80
The cofactor matrix is ${\begin{bmatrix} 38064 & -10816 & 624 \\ -10816 & 5728 & -576 \\ 624 & -576 & 80 \end{bmatrix}}$
Thus, Adj(XTX) = ${\begin{bmatrix} 38064 & -10816 & 624 \\ -10816 & 5728 & -576 \\ 624 & -576 & 80 \end{bmatrix}}$
(XTX)-1 = ${\dfrac{1}{31488}\begin{bmatrix} 38064 & -10816 & 624 \\ -10816 & 5728 & -576 \\ 624 & -576 & 80 \end{bmatrix}}$
⇒ (XTX)-1 = ${\begin{bmatrix} 1\cdot 21 & -0\cdot 34 & 0\cdot 02 \\ -0\cdot 34 & 0.18 & -0.02 \\ 0.02 & -0.02 & 0\cdot 003 \end{bmatrix}}$ …..(ii)
Now, using (i) and (ii), we get
a = (XTX)-1XTy
⇒ a = ${\begin{bmatrix} 1\cdot 21 & -0\cdot 34 & 0\cdot 02 \\ -0\cdot 34 & 0.18 & -0.02 \\ 0\cdot 02 & -0.02 & 0\cdot 003 \end{bmatrix}\begin{bmatrix} 72 \\ 408 \\ 2820 \end{bmatrix}}$
⇒ a = ${\begin{bmatrix} -0\cdot 5 \\ 2 \\ 0\cdot 5 \end{bmatrix}}$Thus, the quadratic regression equation is y = -0.5 + 2x + 0.5x2

Last modified on January 6th, 2025