Table of Contents
Last modified on January 6th, 2025
Like differentiating trigonometric functions, we can also find the derivative of their corresponding inverse functions. These are derived using implicit differentiation and trigonometric identities. Implicit differentiation refers to the rate of change of the inverse functions with respect to its argument.
Below are the derivatives of the six basic inverse trigonometric functions:
Now, we will derive each inverse function.
The arcsine function, arcsin x, is the inverse of the sine function.
${\dfrac{d}{dx}\left( \sin ^{-1}x\right) =\dfrac{1}{\sqrt{1-x^{2}}}}$, which has a domain of -1 < x < 1
Let us consider y = arcsin x
By the definition of inverse sine, sin y = x
Differentiating both sides with respect to x, we get
${\dfrac{d}{dx}\left( \sin y\right)}$ = 1
⇒ ${\cos y\dfrac{dy}{dx}}$ = 1
⇒ ${\dfrac{dy}{dx}=\dfrac{1}{\cos y}}$
⇒ ${\dfrac{dy}{dx}=\sec y}$ …..(i)
As we know, sin2 y + cos2 y = 1
⇒ cos y = ${\sqrt{1-\sin ^{2}y}}$
⇒ cos y = ${\sqrt{1-x^{2}}}$
From (i), we get
⇒ ${\dfrac{dy}{dx}=\dfrac{1}{\sqrt{1-x^{2}}}}$
⇒ ${\dfrac{d}{dx}\left( \arcsin x\right) =\dfrac{1}{\sqrt{1-x^{2}}}}$
Thus, ${\dfrac{d}{dx}\left( \sin ^{-1}x\right) =\dfrac{1}{\sqrt{1-x^{2}}}}$
The arccosine function, arccos x, is the inverse of the cosine function.
${\dfrac{d}{dx}\left( \cos ^{-1}x\right) =-\dfrac{1}{\sqrt{1-x^{2}}}}$, where -1 < x < 1
Let us assume y = arccos x
By the definition of inverse cosine, cos y = x
Differentiating both sides with respect to x, we get
${\dfrac{d}{dx}\left( \cos y\right)}$ = 1
⇒ ${-\sin y\dfrac{dy}{dx}}$ = 1
⇒ ${\dfrac{dy}{dx}=-\dfrac{1}{\sin y}}$
⇒ ${\dfrac{dy}{dx}=-\text{cosec}\, y}$…..(i)
As we know, sin2 y + cos2 y = 1
⇒ sin y = ${\sqrt{1-\cos ^{2}y}}$
⇒ sin y = ${\sqrt{1-x^{2}}}$
From (i), we get
⇒ ${\dfrac{dy}{dx}=-\dfrac{1}{\sqrt{1-x^{2}}}}$
⇒ ${\dfrac{d}{dx}\left( \arccos x\right) =-\dfrac{1}{\sqrt{1-x^{2}}}}$
Thus, ${\dfrac{d}{dx}\left( \cos ^{-1}x\right) = -\dfrac{1}{\sqrt{1-x^{2}}}}$
The arctangent function, arctan x, is the inverse of the tangent function.
${\dfrac{d}{dx}\left( \tan ^{-1}x\right) =\dfrac{1}{1+x^{2}}}$, where x ∈ ℝ
Let us assume y = arctan x
By the definition of inverse tangent, tan y = x
Differentiating both sides with respect to x, we get
${\dfrac{d}{dx}\left( \tan y\right)}$ = 1
⇒ ${\sec ^{2}y\dfrac{dy}{dx}=1}$
⇒ ${\dfrac{dy}{dx}=\dfrac{1}{\sec ^{2}y}}$…..(i)
As we know, sec2 y – tan2 y = 1
⇒ sec2 y = 1 + tan2 y
⇒ sec2 y = 1 + x2
From (i), we get
⇒ ${\dfrac{dy}{dx}=\dfrac{1}{1+x^{2}}}$
⇒ ${\dfrac{d}{dx}\left( \arctan x\right) =\dfrac{1}{1+x^{2}}}$
Thus, ${\dfrac{d}{dx}\left( \tan ^{-1}x\right) =\dfrac{1}{1+x^{2}}}$
The arcsecant function, arcsec x, is the inverse of the secant function.
${\dfrac{d}{dx}\left( \sec ^{-1}x\right) =\dfrac{1}{\left| x\right| \sqrt{x^{2}-1}}}$, where |x| > 1
Let us assume y = arcsec x
By the definition of inverse secant, sec y = x
Differentiating both sides with respect to x, we get
${\dfrac{d}{dx}\left( \sec y\right)}$ = 1
⇒ ${\sec y\tan y\dfrac{dy}{dx}=1}$
⇒ ${\dfrac{dy}{dx}=\dfrac{1}{\sec y\tan y}}$ …..(i)
As we know, sec2 y – tan2 y = 1
⇒ tan2 y = sec2 y – 1
⇒ tan2 y = x2 – 1
⇒ tan y = ${\sqrt{x^{2}-1}}$
Also, sec y = x
From (i), we get
⇒ ${\dfrac{dy}{dx}=\dfrac{1}{\left| x\right| \sqrt{x^{2}-1}}}$
⇒ ${\dfrac{d}{dx}\left( \text {arcsec}\, x\right) =\dfrac{1}{\left| x\right| \sqrt{x^{2}-1}}}$
Thus, ${\dfrac{d}{dx}\left( \sec ^{-1}x\right) =\dfrac{1}{\left| x\right| \sqrt{x^{2}-1}}}$
Note: Here, the absolute value sign around x is used instead of just x because, for the graph of cosec-1 x, the slope of the tangent is always negative. This means the derivative of cosec-1 x remains negative regardless of the sign of x. Thus, the absolute value is necessary to ensure this consistency.
The arccosecant function, arccosec x, is the inverse of the cosecant function.
${\dfrac{d}{dx}\left( \text{cosec} ^{-1}\, x\right) =-\dfrac{1}{\left| x\right| \sqrt{x^{2}-1}}}$, where |x| > 1
Let us consider y = arccosec x
By the definition of inverse cosecant, cosec y = x
Differentiating both sides with respect to x, we get
${\dfrac{d}{dx}\left( \text{cosec}\, y\right)}$ = 1
⇒ ${-\text{cosec}\, y\cot y\dfrac{dy}{dx}=1}$⇒ ${\dfrac{dy}{dx}=-\dfrac{1}{\text{cosec}\, y\cot y}}$ …..(i)
As we know, cosec2 y – cot2 y = 1
⇒ cot2 y = cosec2 y – 1
⇒ cot2 y = x2 – 1
⇒ cot y = ${\sqrt{x^{2}-1}}$
Also, cosec y = x
From (i), we get
⇒ ${\dfrac{dy}{dx}=-\dfrac{1}{\left| x\right| \sqrt{x^{2}-1}}}$
${\dfrac{d}{dx}\left( \text{arccosec}\, x\right) =-\dfrac{1}{\left| x\right| \sqrt{x^{2}-1}}}$
Thus, ${\dfrac{d}{dx}\left( \text{cosec} ^{-1}\, x\right) =-\dfrac{1}{\left| x\right| \sqrt{x^{2}-1}}}$
Note: Similar to the derivative of sec-1 x, the absolute value is used because the graph of sec-1 x always has tangents with positive slopes. This ensures that the derivative remains consistent regardless of the sign of x.
The arccotangent function, arccot x, is the inverse of the cotangent function.
${\dfrac{d}{dx}\left( \cot ^{-1}x\right) =-\dfrac{1}{1+x^{2}}}$, where x ∈ ℝ
Let us consider y = arccot x
By the definition of inverse cotangent, cot y = x
Differentiating both sides with respect to x, we get
${\dfrac{d}{dx}\left( \cot y\right)}$ = 1
⇒ ${-\text{cosec} ^{2}\, y\dfrac{dy}{dx}=1}$
⇒ ${\dfrac{dy}{dx}=-\dfrac{1}{\text{cosec} ^{2}\, y}}$ …..(i)
As we know, cosec2 y – cot2 y = 1
⇒ cosec2 y = 1 + cot2 y
⇒ cosec2 y = 1 + x2
From (i), we get
⇒ ${\dfrac{dy}{dx}=-\dfrac{1}{1+x^{2}}}$
⇒ ${\dfrac{d}{dx}\left( \text{arccot}\, x\right) =-\dfrac{1}{1+x^{2}}}$
Thus, ${\dfrac{d}{dx}\left( \cot ^{-1}x\right) =-\dfrac{1}{1+x^{2}}}$
Find the derivative of f(x) = sin-1 (x2)
As we know, ${\dfrac{d}{dx}\left( \sin ^{-1}x\right) =\dfrac{1}{\sqrt{1-x^{2}}}}$
Here, f(x) = sin-1 (x2)
Differentiating with respect to x,
f’(x) = ${\dfrac{d}{dx}\left( \sin ^{-1}x^{2}\right)}$
By using the chain rule,
= ${\dfrac{1}{\sqrt{1-\left( x^{2}\right) ^{2}}}\cdot 2x}$
= ${\dfrac{2x}{\sqrt{1-x^{4}}}}$
Differentiate h(x) = ${\sec ^{-1}\left( \sqrt{1+x^{2}}\right)}$
As we know, ${\dfrac{d}{dx}\left( \sec ^{-1}x\right) =\dfrac{1}{\left| x\right| \sqrt{x^{2}-1}}}$
Here, h(x) = ${\sec ^{-1}\left( \sqrt{1+x^{2}}\right)}$
Differentiating with respect to x,
h’(x) = ${\dfrac{d}{dx}\left( \sec ^{-1}\left( \sqrt{1+x^{2}}\right) \right)}$
By using the chain rule,
= ${\dfrac{1}{\left| \sqrt{1+x^{2}}\right| \sqrt{\left( 1+x^{2}\right) -1}}\cdot \dfrac{d}{dx}\left( \sqrt{1+x^{2}}\right)}$
Since ${\dfrac{d}{dx}\left( \sqrt{1+x^{2}}\right)}$ = ${\dfrac{1}{2\sqrt{1+x^{2}}}\cdot 2x}$ = ${\dfrac{x}{\sqrt{1+x^{2}}}}$
Thus, h’(x) = ${\dfrac{1}{\left( \sqrt{1+x^{2}}\right) \sqrt{x^{2}}}\cdot \dfrac{x}{\sqrt{1+x^{2}}}}$
= ${\dfrac{1}{\left| 1+x^{2}\right| }}$
If y = cos-1(x3), find y’ at x = ${\dfrac{1}{2}}$
As we know, ${\dfrac{d}{dx}\left( \cos ^{-1}x\right) =-\dfrac{1}{\sqrt{1-x^{2}}}}$
Here, y = cos-1(x3)
Differentiating with respect to x,
y’ = ${\dfrac{d}{dx}\left( \cos ^{-1}\left( x^{3}\right) \right)}$
= ${-\dfrac{1}{\sqrt{1-\left( x^{3}\right) ^{2}}}\cdot 3x^{2}}$
= ${-\dfrac{3x^{2}}{\sqrt{1-x^{6}}}}$
At x = ${\dfrac{1}{2}}$, y’ = ${-\dfrac{3\left( \dfrac{1}{2}\right) ^{2}}{\sqrt{1-\left( \dfrac{1}{2}\right) ^{6}}}}$ = ${-\dfrac{6}{\sqrt{63}}}$
Last modified on January 6th, 2025